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Quantum games of asymmetric information
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We investigate quantum games in which the information is asymmetrically distributed among the players
and find that the possibility of the quantum game outperforming its classical counterpart depends strongly on
not only the entanglement but also the informational asymmetry. What is more interesting, when the informa-
tion distribution is asymmetric, is that the contradictive impact of the quantum entanglement on the profits is
observed, which is not reported in quantum games of symmetric information.
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I. INTRODUCTION

The field of information and computation has experienc
a fundamental innovation since the last decades of the tw
tieth century through the combination with the theory
quantum physics. The new-born theory of quantum inform
tion and computation opens a broad field of potential ap
cations@1#. Its recent application to the theory of games e
tends the classical game theory@2#, which is in fact one of
the cornerstones of modern economics, into the quantum
main. It has been shown that quantum games may have g
advantages over their classical counterparts@3–10#. Many of
the current works focus on games in which the players h
finite number of classical strategies and/or the informatio
symmetrically distributed among the players. Games w
continuous set of strategies and those of asymmetric in
mation, which represent much realistic significance@11#, es-
pecially in market situations in economics, are not giv
much attention. However, the quantization of these gam
deserves thorough investigation and interesting results c
be obtained.

The investigations on quantum games might provide n
insights into the field of economics research, as it does in
fields of computation, communications, and others. There
several reasons why quantizing games that could be app
in economics may be interesting. First, market situatio
could be, in their nature, regarded as games; their quan
tion may be of the same interests as quantizing games@4#.
Second, in any market situation, information and commu
cation are of utmost importance. However, as we live in
quantum world, it is legitimate to think of information a
quantum information and communication may also need
be thought of as quantum communication~at least in the nea
future! @1#. Therefore, it might be interesting to investiga
the quantization of market situations as games and inte
ing quantum features might be explored.

In this paper, we investigate the quantum form of a p
ticular game of the market situation, known as Courno
Duopoly @12# of asymmetric information, based on the pr
viously proposed physical model for continuous-varia
quantum games@6#. In the quantum game of asymmetr
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information, the ‘‘interaction’’ between the quantum e
tanglement and the informational asymmetry creates inter
ing properties of the game. Due to the presence of inform
tional asymmetry, the quantum entanglement h
contradictory effects: on the one hand, it promotes coope
tion and potentially increases the profits but on the ot
hand, it potentially decreases the profits at the same ti
Whether the quantum game outperforms its classical co
terpart depends strongly on not only the quantum entan
ment but also the informational asymmetry.

II. CLASSICAL COURNOT’S DUOPOLY OF
ASYMMETRIC INFORMATION

We now briefly recall the classical Cournot’s Duopo
@12# of asymmetric information. In a simple scenario, firm
and firm 2 simultaneously choose quantities~strategies! q1
and q2, respectively, of a homogeneous product. LetQ
5q11q2 be the total quantity and the market price be

P~Q!5H a2Q for Q<a

0 for Q.a.
~1!

We denote the unit cost of firms 1 and 2 byc1 and c2,
respectively, withcj,a ( j 51,2). Then, the profit for firmj
is

uj~q1 ,q2!5qj@P~Q!2cj #, ~2!

with j 51,2. In the case of asymmetric information, firm
does not clearly know whatc2 ~firm 2’s unit cost! is, it only
knows thatc25cH with probabilityu andc25cL with prob-
ability 12u (cH.cL). Yet, firm 2 knows with certainty the
unit cost of its product (c2) as well as that of firm 1’s (c1).
Let q2H* andq2L* be the quantities of firm 2 whenc25cH and
c25cL , respectively, andq1* be the quantity of firm 1. If
c25cH(L) , then firm 2 needs to setq25q2H(L)* to maximize
its profit:

u2H(L)~q1* ,q2!5q2@~a2q1* 2q2!2cH(L)#. ~3!
©2003 The American Physical Society24-1



es

h

he

s s
th

ec-
s.

to
the
on.

l

be

e

wo
lt of

er-

the
it
cer-
-

e-

ace,

n,

DU, LI, AND JU PHYSICAL REVIEW E 68, 016124 ~2003!
Firm 1 needs to setq15q1* to maximize itsexpectedprofit:

u1~q1 ,q2H* ,q2L* !5uu1~q1 ,q2H* !1~12u!u1~q1 ,q2L* !,
~4!

where

u1~q1 ,q2!5q1@~a2q12q2!2c1#. ~5!

Solving the three optimization problems yields the Bay
Nash equilibrium@2#:

q1* 5
2k12k2

3
,

q2H* 5
a1c122cH

3
1

~12u!D

6
,

q2L* 5
a1c122cL

3
2

uD

6
, ~6!

where

k15a2c1 ,

k25a2@ucH1~12u!cL#,

D5cH2cL . ~7!

The special instance withk15k25k andD50 reduces to the
original model of symmetric information, with unique Nas
equilibrium

q1* 5q2* 5
k

3
~8!

and the payoffs being

u1~q1* ,q2* !5u2~q1* ,q2* !5
k2

9
. ~9!

However, this equilibrium fails to be the Pareto optimum@3#,
which could easily be found to be

q185q285
k

4
, ~10!

with

u1~q18 ,q28!5u2~q18 ,q28!5
k2

8
. ~11!

III. QUANTUM COURNOT’S DUOPOLY OF
ASYMMETRIC INFORMATION

The quantum structure is given in Fig. 1, which is t
same as presented in Ref.@6#. The necessity to include
continuous-variable quantum systems is that a continuou
of distinguishablestates are necessary to represent all
possible outcomes of classical strategies, due to thedistin-
guishability of classical strategies. In Fig. 1,uvac&1 and
01612
-

et
e

uvac&2 are two vacuum states, e.g., of two single-mode el
tromagnetic fields, respectively belonging to the two firm
Ĵ(g) and Ĵ(g)† are unitary operators, which are known
both the firms and should be symmetric with respect to
interchange of the two firms to guarantee a fair competiti
The initial state of the game is

uc i&5 Ĵ~g!uvac&1uvac&2 . ~12!

Strategic moves of firmj are associated with unitary loca
operatorD̂ j . The final state of the game is denoted by

uc f&5 Ĵ~g!†~D̂1^ D̂2!Ĵ~g!uvac&1uvac&2 . ~13!

It is straightforward to set the final measurement to
corresponding to observablesX̂j5(â j

†1â j )/A2 ~the ‘‘posi-

tion’’ operators! for firm j, where â j
† (â j ) is the creation

~annihilation! operator of firm j ’s electromagnetic field. If
the measurement result isx̃ j , then the individual quantity is
determined byqj5 x̃ j and hence, the profit by

uj
Q~D̂1 ,D̂2!5uj~ x̃1 ,x̃2!, ~14!

where superscript ‘‘Q’’ denotes ‘‘ quantum.’’ However, as
will be shown in Eq.~18!, in the case we considered in th
present paper, the final state of gameuc f& is a tensor product
of two coherent states, respectively, belonging to the t
firms. One cannot have a deterministic measurement resu
X̂j since a coherent state is not an eigenstate ofX̂j . This
poses a problem because quantityqj is affected by uncer-
tainty Dqj

25 1
2 . One possible method to reduce this unc

tainty is to perform appropriatesqueezingoperation on the
final state before the measurement according toX̂j is carried
out. The uncertainty of the measurement result ofX̂j could
be reduced, at the cost of increasing the uncertainty of
measurement result ofP̂j . In this paper, we assume the lim
case that the state is infinitely squeezed, so that the un
tainty of the measurement result ofX̂j tends to zero. Conse
quently, given a coherent state exp(2ix̃j8P̂j)uvac& j , the final

measurement could deterministically yieldqj5 x̃ j8 in this
limit.

The classical Cournot’s Duopoly can be faithfully repr
sented whenĴ(g)5 Ĵ(g)†5I ~the identity operator!. Set

Sj5$D̂ j~xj !5exp~2 ix j P̂j !uxjP@0,̀ !% ~15!

is the quantum counterpart of the classical strategic sp
where P̂j5 i (â j

†2â j )/A2 ~the ‘‘momentum’’ operators!. In
this paper, we restrict ourselves to the ‘‘ minimal’’ extensio
i.e., we maintain the strategic space unexpanded (Sj for firm

FIG. 1. The quantum structure of Cournot’s Duopoly.
4-2
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j ) while only extend the initial stateuc i& to be entangled.
This minimal extension guarantees that any features of
game not seen in the classical form could be completely
to the quantum entanglement. However, it is also possibl
find a quantum version that includes both the entangled s
and the expanded strategic spaces.

The choice of the entangling operator is not unique. Ev
the requirement that for vanishing entanglement the class
game should be reproduced cannot uniquely specify this
erator in the case presented in this paper. However, a
sible and legitimate one is

Ĵ~g!5e2g(â1
†â2

†
2â1â2)5eig(X̂1P̂21X̂2P̂1). ~16!

The initial state is exactly the two-mode squeezed vacu
state:

uc i&5exp$2g~ â1
†â2

†2â1â2!%uvac&1uvac&2 , ~17!

whereg>0 is known as the squeezing parameter and can
reasonably regarded as a measure of entanglement. De
calculation reveals that if firmj ’s strategy is D̂ j (xj )
5exp(2ixjP̂j), then the final state is

uc f&5exp$2 i ~x1coshg1x2sinhg!P̂1%uvac&1

^ exp$2 i ~x2coshg1x1sinhg!P̂2%uvac&2 . ~18!

Hence, the quantities read out from the final measurem
are

q15x1coshg1x2sinhg,

q25x2coshg1x1sinhg. ~19!

The total quantity isQ5q11q25eg(x11x2) and the market
price isP5a2eg(x11x2). Therefore, profits are

u1
Q~x1 ,x2!5~x1coshg1x2sinhg!@P2c1#,

u2H(L)
Q ~x1 ,x2!5~x2coshg1x1sinhg!@P2cH(L)#, ~20!

here, for convenience, we directly denote the strategy bxj

when it is D̂ j (xj ).
Let $x1* ,x2H* ,x2L* % be the Bayes-Nash equilibrium. The

x25x2H(L)* is chosen to maximizeu2H(L)
Q (x1* ,x2), and

x15x1* is chosen to maximize uu1
Q(x1 ,x2H* )

1(12u) u1
Q(x1 ,x2L* ). Solving the three optimization prob

lems yields the Bayes-Nash equilibrium@2# and the profits
could also be obtained. For convenience and simplicity,
further setk15k25k. Detailed calculation gives the uniqu
Bayes-Nash equilibrium as

x1* 5
kcoshg

112e2g
,

x2H* 5
k2~12u!D1e2g@k22~12u!D#

2eg~112e2g!
,
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x2L* 5
k1uD1e2g@k12uD#

2eg~112e2g!
. ~21!

In the remaining part of this paper, we would like to co
sider an iterative game in which the unit cost of firm 2
product is determined by the probability known by firm
i.e., cH with probability u andcL with probability 12u, to
avoid the ambiguity and complexity caused by the spec
choice of firm 2’s unit cost in a single game. Theaverage
profits in the iterative game are

ū1~g,s!5uu1
Q~x1* ,x2H* !1~12u!u1

Q~x1* ,x2L* !

5
k2

8 F 8egcoshg

~3coshg1sinhg!2
1~e22g21!sG ,

ū2~g,s!5uu2H
Q ~x1* ,x2H* !1~12u!u2L

Q ~x1* ,x2L* !

5ū1~g,s!1
k2

4
s, ~22!

where

s5u~12u!
D2

k2
>0. ~23!

The profits are already expressed as functions ofg ands and
are plotted in Fig. 2.

Notations defined in Eq.~23! can reasonably be regarde
as theamount of informational asymmetry. Indeed,s50 is
attained only whenu50, u51, or D50, each correspond
ing to the case where firm 1 has the perfect informat
about firm 2’s unit cost, i.e., there is no asymmetry in t
information distribution. However, for fixedu, s increases as
D increases and for fixedD, s increases asu approaches 1/2.
This means that the more asymmetrical the information d
tribution is, the largers is. It is in this sense that we regards
as a measure of the informational asymmetry of the gam

We now investigate how the profits depend on the
tanglement and the amount of informational asymmetry. T
derivative ofū1 and ū2 with respect tog is

]ū1

]g
5

]ū2

]g
5

e22gk2

4 F 4eg

~3coshg1sinhg!3
2sG . ~24!

Equation~24! shows that there is a threshold for the amou
of informational asymmetry,sm54/27. If s.sm ,

]ū1

]g
5

]ū2

]g
,0, ~25!

which means the profits monotonously decrease asg in-
creases. In this case, the quantum game is definitely infe
to the classical game. It is also interesting to see thats

.1 we can always find that for some value ofg, ū1 will be
less than zero whileū2 remains positive. In this case, lackin
4-3
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FIG. 2. The profits in the iterative game withk15k25k, with respect to tanh(g) and the amount of informational asymmetrys @ tanh(g)

monotonously mapsgP@0,̀ ) into tanh(g)P@0,1)]. ū1 is at the left andū2 at the right.
av
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information makes firm 1 lose money in business on an
erage, yet it is beyond firm 1’s means to get out of it.

In the case thats,sm ,

]ū1

]g
Ug505

]ū2

]g
U

g50

.0, ~26!

the profits increase asg increases wheng is small. However,
we can findgm satisfying

]ū1

]g
Ug5gm

5
]ū2

]g
U

g5gm

50, ~27!

hence,ū1 and ū2 simultaneously reach the maximum atg
5gm . But wheng.gm the profits decrease.

In the limit thatg→1`, we have

ū1~g,s!ug→1`5
k2~12s!

8
,

ū2~g,s!ug→1`5
k2~11s!

8
. ~28!

While in the classical gameg50,

ū1~0,s!5
k2

9
,

ū1~0,s!5k2S 1

9
1

s

4D , ~29!

Therefore, if 1/9,s,sm , we can findgc.0 satisfying

ū1~gc ,s!5ū1~0,s!,

ū2~gc ,s!5ū2~0,s!. ~30!

Thus, we find another threshold for the amount of inform
tional asymmetry,sc51/9,sm .
01612
-

-

For s,sc , ū1(g,s)ug→1`.ū1(0,s), and ū2(g,s)ug→1`

.ū2(0,s), the quantum game is always superior to the cl
sical game for anyg.0. Forsc,s,sm , the quantum game
is superior to the classical game for 0,g,gc but inferior
for g.gc and the profits reach the maximum atg5gm
,gc . While for s.sm , the quantum game is definitely in
ferior to the classical game and the profits will get wor
when the entanglement increases. To be illustrative, we
firm 1’s profit ~divided byk2) with different settings ofs in
Fig. 3 in which all the above intriguing features could b
seen.

In fact, the profits in Eq.~22! consist of two parts: one is
independent ofs and the other is linear withs. The first part
is an increasing function ofg while the second is a decrea
ing one. The combination of these two parts creates the
triguing features as mentioned above. However, it also
plies that the quantum entanglement has contradictive eff
on the game with asymmetric information: on the one han
potentially increases the profits but on the other hand it
tentially decreases it. The part independent ofs in Eq. ~22!
can be regarded as the representation of cooperation. As
entanglement increases, the cooperation increases and
profits potentially increase. While the part dependent ons in

FIG. 3. The ū1 /k2 versus tanh(g) plot with k15k25k. The
solid lines are associated with the values ofs. The horizontal dashed

line at ū1 /k251/9 represents the classical profit.
4-4
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Eq. ~22! represents the impact of the informational asymm
try, this impact will decrease the payoff with the presence
entanglement not only for the player who lacks informati
but also for the one who possesses more information.

A special instance is the case withs50 ~see in Ref.@6#!
in which the classical game turns back to the original one
symmetric information proposed by Cournot@12#. While in
the maximally entangled limit withg→1`, we have
ū1(g,0)ug→1`5ū2(g,0)ug→1`→k2/8, which is exactly the
Pareto optimum. In this case, the initial state tends towa
the singular limit* ux,2x&dx. It is this limiting state, first
considered by Einstein, Podolsky, and Rosen, which ena
the two firms to best cooperate and therefore, to be b
rewarded. The dilemmalike situation is thus completely
moved in this limit.

IV. CONCLUSION

We investigated the quantization of a game of a mar
situation known as Cournot’s Duopoly of asymmetric info
mation, based on the continuous-variable model for quan
01612
-
f

f

s

es
st
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t

m

games given in Ref.@6#. We found that with the presence o
informational asymmetry, the quantum entanglement
contradictory effects. On the one hand the quantum entan
ment promotes cooperation and potentially increases
profits. On the other hand, due to the asymmetric distribut
of information, the quantum entanglement induces a decr
ing effect not only to the player who lacks information b
also to the one who possesses more information. The c
bination of these two effects results in an intriguing variati
of the game with respect to the measure of entanglement
the amount of informational asymmetry.
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